Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2400985, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693073

RESUMO

Ionic liquids have been widely used to improve the efficiency and stability of perovskite solar cells (PSCs), and are generally believed to passivate defects on the grain boundaries of perovskites. However, few studies have focused on the relevant effects of ionic liquids on intragrain defects in perovskites which have been shown to be critical for the performance of PSCs. In this work, the effect of ionic liquid 1-hexyl-3-methylimidazolium iodide (HMII) on intragrain defects of formamidinium lead iodide (FAPbI3) perovskite is investigated. Abundant {111}c intragrain planar defects in pure FAPbI3 grains are found to be significantly reduced by the addition of the ionic liquid HMII, shown by using ultra-low-dose selected area electron diffraction. As a result, longer charge carrier lifetimes, higher photoluminescence quantum yield, better charge carrier transport properties, lower Urbach energy, and current-voltage hysteresis are achieved, and the champion power conversion efficiency of 24.09% is demonstrated. These observations suggest that ionic liquids significantly improve device performance resulting from the elimination of {111}c intragrain planar defects.

2.
ACS Appl Mater Interfaces ; 16(7): 8875-8884, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38343187

RESUMO

Lithium bis(trifluoromethane) sulfonamide (LiTFSI) and oxygen-doped organic semiconductors have been frequently used to achieve record power conversion efficiencies of perovskite solar cells (PSCs). However, this conventional doping process is time-consuming and leads to poor device stability due to the incorporation of Li ions. Herein, aiming to accelerate the doping process and remove the Li ions, we report an alternative p-doping process by mixing a new small-molecule organic semiconductor, N2,N2,N7,N7-tetrakis (4-methoxyphenyl)-9-(4-(octyloxy) phenyl)-9H carbazole-2,7-diamine (labeled OH44) and its preoxidized form OH44+(TFSI-). With this method, a champion efficiency of 21.8% has been achieved for small-area PSCs, which is superior to the state-of-the-art EH44 and comparable with LiTFSI and oxygen-doped spiro-OMeTAD. Moreover, the stability of OH44-based PSCs is improved compared with those of EH44, maintaining more than 85% of its initial efficiency after aging in an ambient condition without encapsulation for 1000 h. In addition, we achieved efficiencies of 14.7 and 12.6% for the solar modules measured with a metal mask of 12.0 and 48.0 cm2, respectively, which demonstrated the scalability of this method.

3.
Light Sci Appl ; 12(1): 291, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052800

RESUMO

Wavelength-selective thermal emitters (WS-TEs) have been frequently designed to achieve desired target emissivity spectra, as a typical emissivity engineering, for broad applications such as thermal camouflage, radiative cooling, and gas sensing, etc. However, previous designs require prior knowledge of materials or structures for different applications and the designed WS-TEs usually vary from applications to applications in terms of materials and structures, thus lacking of a general design framework for emissivity engineering across different applications. Moreover, previous designs fail to tackle the simultaneous design of both materials and structures, as they either fix materials to design structures or fix structures to select suitable materials. Herein, we employ the deep Q-learning network algorithm, a reinforcement learning method based on deep learning framework, to design multilayer WS-TEs. To demonstrate the general validity, three WS-TEs are designed for various applications, including thermal camouflage, radiative cooling and gas sensing, which are then fabricated and measured. The merits of the deep Q-learning algorithm include that it can (1) offer a general design framework for WS-TEs beyond one-dimensional multilayer structures; (2) autonomously select suitable materials from a self-built material library and (3) autonomously optimize structural parameters for the target emissivity spectra. The present framework is demonstrated to be feasible and efficient in designing WS-TEs across different applications, and the design parameters are highly scalable in materials, structures, dimensions, and the target functions, offering a general framework for emissivity engineering and paving the way for efficient design of nonlinear optimization problems beyond thermal metamaterials.

4.
J Fluoresc ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37987983

RESUMO

Novel fluorescent probes were constructed for the convenient and rapid analysis of Cu2+ ions, taking advantages of the the triphenylamine backbone as chromophore and acylhydrazone group as the Cu2+ recognition site. Especially, probe T2 could act as a dual-channel probe towards Cu2+ through both fluorescent and colorimetric method. Through the fluorescent method, the detection limit of probe T2 was calculated to be as low as 90 nmol/L and there was a good linear relationship between the intensity change and the concentration of Cu2+ ions. By virtue of the two-phase liquid-liquid extraction method, probe T2 could be successfully applied in practical extraction and separation of Cu2+. Furthermore, by applying a "turn-off-turn-on" circle, compound T2 could act as a sensitive probe towards S2- anions through the indirect approach and the detection limit of complex T2-Cu2+ for S2- anion was found to be 110 nmol/L.

5.
Small ; 19(36): e2302194, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37118855

RESUMO

The α-phase formamidinium lead tri-iodide (α-FAPbI3 ) has become the most promising photovoltaic absorber for perovskite solar cells (PSCs) due to its outstanding semiconductor properties and astonishing high efficiency. However, the incomplete crystallization and phase transition of α-FAPbI3 substantially undermine the performance and stability of PSCs. In this work, a series of the protic amine carboxylic acid ion liquids are introduced as the precursor additives to efficiently regulate the crystal growth and phase transition processes of α-FAPbI3 . The MA2 Pb3 I8 ·2DMSO phase is inhibited in annealing process, which remarkably optimizes the phase transition process of α-FAPbI3 . It is noted that the functional groups of carboxyl and ammonium passivate the undercoordinated lead ions, halide vacancies, and organic vacancies, eliminating the deleterious nonradiative recombination. Consequently, the small-area devices incorporated with 2% methylammonium butyrate (MAB) and 1.5% n-butylammonium formate (BAFa) in perovskite show champion efficiencies of 25.10% and 24.52%, respectively. Furthermore, the large-area modules (5 cm × 5 cm) achieve PCEs of 21.26% and 19.27% for MAB and BAFa additives, indicating the great potential for commercializing large-area PSCs.

6.
Opt Express ; 30(13): 23695-23703, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36225044

RESUMO

Owing to the broad spectral response and flexible choices of donors and acceptors, fluorescence resonance energy transfer (FRET) system based on quantum dots (QDs) is a potential candidate for enhancing performance of solar cells and other optoelectronic devices. Thus it is necessary to develop such FRET systems with high efficiency and understand the involved photophysical dynamics. Here, with type I CuInS2@ZnS core-shell quantum dots as the energy donor, series of CuInS2@ZnS-SQ complexes are synthesized by adjusting the acceptor (squaric acid, SQ) concentration. The FRET dynamics of the samples is systematically investigated by virtue of steady-state emission, time-resolved fluorescence decay, and transient absorption measurements. The experimental results display a positive correlation between the energy transfer efficient (η). The best energy transfer efficient achieved from experimental data is 52%. This work provides better understanding of the photophysical dynamics in similar complexes and facilitates further development of new photoelectronic devices based on relevant FRET systems.

7.
J Phys Chem Lett ; 13(14): 3188-3196, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35377654

RESUMO

The inclusion of potassium in perovskite solar cells (PSCs) has been widely demonstrated to enhance the power conversion efficiency and eliminate the hysteresis effect. However, the effects of the locations K+ cations on the charge-carrier dynamics remain unknown with respect to achieving a more delicate passivation design for perovskite interfaces and bulk films. Herein, we employ the combined electrical and ultrafast dynamics analysis for the perovskite film to distinguish the effects of bulk doping and interfacial passivation of the potassium cation. Transient absorption spectroscopy indicates an enhancement of charge-carrier diffusion for K+-doped PSCs (from 808 to 605 ps), and charge-carrier transfer is significantly promoted by K+ interface passivation (from 12.34 to 1.23 ps) compared with that of the pristine sample. Importantly, K+ doping can suppress the formation of wide bandgap perovskite phases (e.g., FAPbI0.6Br2.4 and FAPbI1.05Br1.95) that generate an energy barrier on the charge-carrier transport channel.

8.
J Fluoresc ; 32(3): 1135-1141, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35318546

RESUMO

In this work, dual-emissive ratiometric fluorescent system was constructed by the introduction of an ideal internal reference. By virtue of its unique alkalinity, N2H4 could undergo a hydrazinolysis reaction with the ester group of F1, inducing remarkable fluorescence enhancement while the blue fluorescence of the internal reference DPA remained constant. Consequently, the fluorescence intensity ratios (I540/I440) were proportional to the concentrations of N2H4, which was beneficial for the exactly quantitative detection. The skillful strategy granted the sensing system advantages such as relative good solubility in aqueous media, easy-to-design, simple synthesis, large emission shift, good ratiometric response, as well as the successful application in real water samples and cell imaging.


Assuntos
Corantes Fluorescentes , Hidrazinas , Diagnóstico por Imagem , Espectrometria de Fluorescência , Água
9.
RSC Adv ; 10(15): 8905-8909, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35496535

RESUMO

All-inorganic CsPbBr3 perovskite solar cells have triggered incredible interest owing to their superior stability, especially under high temperature conditions. Different from the organic-inorganic hybrid perovskites, inorganic CsPbBr3 perovskite always need a high annealing temperature for the formation of a cubic phase. Generally, the higher temperature (over 300 °C) and longer annealing time will promote the growth of CsPbBr3, resulting in larger grain sizes and lower trap density in the crystals. However, CsPbBr3 perovskite can also be damaged by excessive annealing temperature (∼350 °C) and time, since PbBr2 only has a melting temperature close to 357 °C. To address this issue, herein, we developed a novel pressure-assisted annealing method to prevent the sublimation of PbBr2 at high temperature. The CsPbBr3 films were firstly deposited by sequential thermal evaporation, and then annealed at 335 °C in an alloy pressure vessel. By controlling the pressure of the vessel, we obtained CsPbBr3 films with various morphologies. At normal atmospheric pressure, the as-prepared CsPbBr3 film exhibited small grain sizes and was full of pinholes. With the increase of annealing pressure, the grain sizes of the film showed a significant increasing trend, and the pinholes gradually vanished. When the pressure value came to 10 MPa, compact and uniform CsPbBr3 films with large grain sizes were obtained. Based on these films, CsPbBr3 perovskite solar cells with FTO/compact-TiO2/CsPbBr3/carbon architecture achieved a champion power conversion efficiency of 7.22%.

10.
Sci Rep ; 8(1): 442, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323220

RESUMO

Large-area, pinhole-free CH3NH3PbI3 perovskite thin films were successfully fabricated on 5 cm × 5 cm flexible indium tin oxide coated polyethylene naphthalate (ITO-PEN) substrates through a sequential evaporation/spin-coating deposition method in this research. The influence of the rate-controlled evaporation of PbI2 films on the quality of the perovskite layer and the final performance of the planar-structured perovskite solar cells were investigated. An ultrafast evaporation rate of 20 Å s-1 was found to be most beneficial for the conversion of PbI2 to CH3NH3PbI3 perovskite. Based on this high-quality CH3NH3PbI3 film, a resultant flexible perovskite solar sub-module (active area of 16 cm2) with a power conversion efficiency of more than 8% and a 1.2 cm2 flexible perovskite solar cell with a power conversion efficiency of 12.7% were obtained.

11.
RSC Adv ; 8(27): 14991-14994, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35541338

RESUMO

Cesium 5-aminovaleric acetate (NH2C4H8COOCs) was used to improve the intrinsic thermal stability of the methylammonium lead triiodide (MAPbI3) perovskite. The corresponding carbon-based perovskite solar cells without encapsulation showed favourable stability at 100 °C for 500 h.

12.
J Fluoresc ; 27(4): 1427-1433, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28432631

RESUMO

Taking advantages of both the oxidation property of hypochlorite and different coordination properties of Cu+ and Cu2+ ions, we developed a new fluorescent probe for hypochlorite anion, namely, compound C1. In the presence of ClO-, the sensing system displayed extraordinary fluorescence quenching, which was beneficial to the production of a high signal output during detection process. By virtue of its special oxidation property, the probe displayed high selectivity for ClO- over other anions. Moreover, this novel sensing system could be used for the analysis of ClO- levels in tap water and potentially in environmental samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...